Bifurcation Theory


Introduction to the study of qualitative changes in differential equations and difference equations with parameters. These changes include, for instance, the creation and destruction of equilibrium states, changes in periodic behaviour of solutions, changes in stability and transition to chaotic behaviour. In particular: fold or saddle-node points, pitchforks, higher codimension singularities of equilibria or fixed points; bifurcation at homoclinic cycles; Hopf bifurcation; period doubling; period doubling cascades.
Special classes of dynamical systems may also be treated, for instance differential equations with symmetry or coupled cell systems.

Research and Events


More Events

Defended Theses

  • Structure, algorithmics and dynamics of endomorphisms for certain classes of groups
      André da Cruz Carvalho (April 2023)
      Pedro V. Silva
  • A point-free study of z-embeddings, more general classes of localic maps, and uniform continuity
      Ana Belén Avilez García (April 2023)
      Jorge Picado
  • Analysis of equations of motion of inextensible strings and networks
      Ayk Telciyan (April 2023)
      Dmitry Vorotnikov
More Theses