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Chapter 1

Introduction

1.1 First section of the first chapter

And now I begin my first chapter here . . .

And now to cite some people ? ? ]

How to index a name:

A LATEX class file is a file, which holds style information for a particular LATEX.

How to start a list of Nomenclature and Notation (OPTIONAL): ...

1.1.1 First subsection in the first section

. . . and some more

1.1.2 Second subsection in the first section

. . . and some more . . .

First subsub section in the second subsection

. . . and some more in the first subsub section otherwise it all looks the same doesn’t it? well we can
add some text to it . . .

1.1.3 Third subsection in the first section

. . . and some more . . .

First subsub section in the third subsection

. . . and some more in the first subsub section otherwise it all looks the same doesn’t it? well we can
add some text to it and some more and some more and some more and some more and some more and
some more and some more . . .
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2 Introduction

Second subsub section in the third subsection

. . . and some more in the first subsub section otherwise it all looks the same doesn’t it? well we can
add some text to it . . .

1.2 Second section of the first chapter

and here I write more . . .

1.3 The layout of formal tables

This section has been modified from “Publication quality tables in LATEX*” by Simon Fear.
The layout of a table has been established over centuries of experience and should only be altered

in extraordinary circumstances.
When formatting a table, remember two simple guidelines at all times (see Table 1.4):

1. Never, ever use vertical rules (lines).

2. Never use double rules.

These guidelines may seem extreme but I have never found a good argument in favour of breaking
them. For example, if you feel that the information in the left half of a table is so different from that
on the right that it needs to be separated by a vertical line, then you should use two tables instead. Not
everyone follows the second guideline:

There are three further guidelines worth mentioning here as they are generally not known outside
the circle of professional typesetters and subeditors:

3. Put the units in the column heading (not in the body of the table).

4. Always precede a decimal point by a digit; thus 0.1 not just .1.

5. Do not use ‘ditto’ signs or any other such convention to repeat a previous value. In many
circumstances a blank will serve just as well. If it won’t, then repeat the value.

A frequently seen mistake is to use ‘\begin{center}’ . . . ‘\end{center}’ inside a figure or table
environment. This center environment can cause additional vertical space. If you want to avoid that
just use ‘\centering’

These guidelines may seem extreme but I have never found a good argument in favour of breaking
them. For example, if you feel that the information in the left half of a table is so different from that
on the right that it needs to be separated by a vertical line, then you should use two tables instead. Not
everyone follows the second guideline:

There are three further guidelines worth mentioning here as they are generally not known outside
the circle of professional typesetters and subeditors:
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Table 1.1 A badly formatted table

Species I Species II
Dental measurement mean SD mean SD
I1MD 6.23 0.91 5.2 0.7
I1LL 7.48 0.56 8.7 0.71
I2MD 3.99 0.63 4.22 0.54
I2LL 6.81 0.02 6.66 0.01
CMD 13.47 0.09 10.55 0.05
CBL 11.88 0.05 13.11 0.04

Table 1.2 A nice looking table

Dental measurement
Species I Species II

mean SD mean SD
I1MD 6.23 0.91 5.2 0.7
I1LL 7.48 0.56 8.7 0.71
I2MD 3.99 0.63 4.22 0.54
I2LL 6.81 0.02 6.66 0.01
CMD 13.47 0.09 10.55 0.05
CBL 11.88 0.05 13.11 0.04

Table 1.3 Even better looking table using booktabs

Dental measurement
Species I Species II

mean SD mean SD

I1MD 6.23 0.91 5.2 0.7
I1LL 7.48 0.56 8.7 0.71
I2MD 3.99 0.63 4.22 0.54
I2LL 6.81 0.02 6.66 0.01
CMD 13.47 0.09 10.55 0.05
CBL 11.88 0.05 13.11 0.04



4 Introduction

Table 1.4 Characterizations of normal and extremally disconnected spaces

Space X NORMAL EXTREMALLY DISCONNECTED

Urysohn's

separation type

lemma

Every two disjoint CLOSED

subsets of X are completely
separated (Urysohn 1925).

Every two disjoint OPEN subsets of
X are completely separated
(Gillman & Jerison 1960).

Tietze's extension

type theorem

Each CLOSED subset of X is
C∗-embedded (Tietze 1915).

Each OPEN subset of X is
C∗-embedded (Gillman & Jerison
1960).

Kat¥tov-Tong

insertion type

theorem

For every UPPER semicontinuous
real function f and LOWER semi-
continuous real function g satisfy-
ing f ≤ g, there exists a continuous
real function h such that f ≤ h ≤ g
(Katětov 1951, Tong 1952).

For every LOWER semicontinuous
real function f and UPPER semi-
continuous real function g satisfy-
ing f ≤ g, there exists a continuous
real function h such that f ≤ h ≤ g
(Stone 1949, Lane 1975).

Hausdor� mapping

invariance type

theorem

The image of X under any
CLOSED continuous map is
NORMAL (Hausdorff 1935).

The image of X under any OPEN

continuous map is EXTREMALLY

DISCONNECTED.

1.4 Next section

1.5 Next section

1.6 Next section

1.7 Next section

1.8 Next section

1.9 Next section



Chapter 2

My second chapter

2.1 Reasonably long section title

I’m going to randomly include a picture in Figure 2.1.

Fig. 2.1 This is just a long figure caption

Enumeration

1. The first topic is dull

5



6 My second chapter

2. The second topic is duller

(a) The first subtopic is silly

(b) The second subtopic is stupid

3. The third topic is the dullest

itemize

• The first topic is dull

• The second topic is duller

– The first subtopic is silly

– The second subtopic is stupid

• The third topic is the dullest

description

The first topic is dull

The second topic is duller

The first subtopic is silly

The second subtopic is stupid

The third topic is the dullest

2.2 Second section

Galois was born on 25 October 1811 to Nicolas-Gabriel Galois and Adélaïde-Marie (born Demante).
His father was a Republican and was head of Bourg-la-Reine’s liberal party. He became mayor of the
village after Louis XVIII returned to the throne in 1814. His mother, the daughter of a jurist, was a
fluent reader of Latin and classical literature and was responsible for her son’s education for his first
twelve years. At the age of 10, Galois was offered a place at the college of Reims, but his mother
preferred to keep him at home.

In October 1823, he entered the Lycée Louis-le-Grand, and despite some turmoil in the school at
the beginning of the term (when about a hundred students were expelled), Galois managed to perform
well for the first two years, obtaining the first prize in Latin. He soon became bored with his studies
and, at the age of 14, he began to take a serious interest in mathematics.

He found a copy of Adrien Marie Legendre’s Éléments de Géométrie, which it is said that he
read “like a novel” and mastered at the first reading. At 15, he was reading the original papers of
Joseph Louis Lagrange, such as the landmark Réflexions sur la résolution algébrique des équations
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which likely motivated his later work on equation theory, and Leçons sur le calcul des fonctions, work
intended for professional mathematicians, yet his classwork remained uninspired, and his teachers
accused him of affecting ambition and originality in a negative way.1.

While many mathematicians before Galois gave consideration to what are now known as groups,
it was Galois who was the first to use the word group (in French groupe) in a sense close to the
technical sense that is understood today, making him among the founders of the branch of algebra
known as group theory. He developed the concept that is today known as a normal subgroup. He
called the decomposition of a group into its left and right cosets a proper decomposition if the left and
right cosets coincide, which is what today is known as a normal subgroup. He also introduced the
concept of a finite field (also known as a Galois field in his honor), in essentially the same form as it is
understood today.

In his last letter to Chevalier and attached manuscripts, the second of three, he made basic studies
of linear groups over finite fields:

• He constructed the general linear group over a prime field, GL(ν , p) and computed its order, in
studying the Galois group of the general equation of degree pν .

• He constructed the projective special linear group PSL(2, p). Galois constructed them as
fractional linear transforms, and observed that they were simple except if p was 2 or 3. These
were the second family of finite simple groups, after the alternating groups.

• He noted the exceptional fact that PSL(2, p) is simple and acts on p points if and only if p is 5,
7, or 11.

1My footnote goes blah blah blah! . . .
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2.3 Third section

2.4 Fourth section

2.5 Hidden section





Chapter 3

My third chapter

3.1 Title with math σ

The well known Pythagorean theorem x2 + y2 = z2 was proved to be invalid for other exponents.
Meaning the next equation has no integer solutions: xn + yn = zn.

The binomial coefficient is defined by the next expression:(
n
k

)
=

n!
k!(n− k)!

And of course this command can be included in the normal text flow
(n

k

)
. Limit limx→∞ f (x) inside

text.
lim
x→∞

f (x)

The most famous equation in the world: E2 = (m0c2)2 +(pc)2, which is known as the energy-
mass-momentum relation as an in-line equation.

CIF : F j
0 (a) =

1
2πι

∮
γ

F j
0 (z)

z−a
dz (3.1)

Integral
∫ b

a x2dx inside text.

∫∫∫
V

µ(u,v,w)dudvdw (3.2)

3.2 Preliminaries I. Free constructions

We will work with point-free real numbers as they are usually described in literature, that is, by
generators subject to relations. Since the free generators come from a set that is in fact a meet-
semilattice (while its elements are used in the free construction simply as elements of a set) we
think that it may be useful for the reader to compare the free frames over sets with free frames over
semilattices.

11



12 My third chapter

We will work with point-free real numbers as they are usually described in literature, that is,
by generators subject to relations. Since the free generators come from a set that is in fact a meet-
semilattice (while its elements are used in the free construction simply as elements of a set) we
think that it may be useful for the reader to compare the free frames over sets with free frames over
semilattices.

We will work with point-free real numbers as they are usually described in literature, that is,
by generators subject to relations. Since the free generators come from a set that is in fact a meet-
semilattice (while its elements are used in the free construction simply as elements of a set) we
think that it may be useful for the reader to compare the free frames over sets with free frames over
semilattices.

3.2.1 Free semilattice with 1.

For a set X define F(X) = {A ⊆ X | A finite} ordered by ≤=⊇ so that we have the meet A∧B = A∪B.
Denote by βX the mapping

βX = (x 7→ {x}) : X → F(X).

Then we have for each meet-semilattice S with 1 and each mapping f : X → S precisely one meet-
semilattice homomorphism f : F(X)→ S such that f βX = f and f ( /0) = 1, namely the homomorphism
defined by f (A) =

∧
x∈A f (x).

3.2.2 Free frame generated by a semilattice with 1.

For a meet-semilattice S with 1 set D(S) = {U ⊆ S |↓U =U ̸= /0}.D(S) is a frame with unions for
joins and intersections for meets and if we denote by αS the mapping

αS = (s 7→↓s) : S →D(S)

we have a meet-semilattice homomorphism such that for each frame L and each meet-semilattice
homomorphism h : S → L there is precisely one frame homomorphism ĥ : D(S)→ L such that ĥαS = h,
namely that defined by ĥ(U) =

∨
s∈U h(s).

The free frame over a set can be now obtained combining F and D, that is, as DF(X).

3.2.3 Free frames over a set and over a meet-semilattice compared.

Now suppose we have a construction of a frame based on a set which is endowed by a meet-semilattice
structure. We will compare the free constructions as over the carrier |S| and the one based directly on
the semilattice S.

We will use the standard factorization procedure as e.g. in [? , III.11]. On DF(|S|) define a
relation

M = {(↓A,↓B) |
∧

A =
∧

B in S}

and write κ : DF(|S|)→DF(|S|)/M for the quotient map. Consider the following diagram:
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|S|
β|S| //

id

��

F(|S|)
αF(|S|) //

h=id

��

DF(|S|)

κ

��

ĥ

zz
S

αS //

f

66
D(S)

ψ

11 DF(|S|)/M
φ

rr

Since ĥ obviously respects the relation M we have a frame homomorphism φ such that φκ = ĥ.
Further, define a mapping

f : S →DF(|S|)/M

by setting f (s) = κ(↓{s}). By the definition of M, f is a meet-semilattice homomorphism and hence
there is a frame homomorphism ψ such that ψαS = f . Now we have

φψ (↓s) = φψαS(s) = φ f (s) = φκ (↓{s}) = ĥ(↓{s}) =
= ĥαF(|S|)({s}) = h({s}) = hβ|S|(s) = αS(s) =↓s and

ψφ (κ (↓{s})) = ψ ĥ(↓{s}) = ψ ĥαF(|S|)({s}) =ψαS(s) = f (s) = κ (↓{s})

so that φψ and ψφ are identical on systems of generators and hence φ and ψ are mutually inverse
homomorphisms.

Thus, if we represent a construction based on factorizing D(S) identifying pairs from a relation R
as a free construction on |S| we only have to consider the relation R∪M instead of R, with the M as
above.

3.3 Where does it come from?

Thus, if we represent a construction based on factorizing D(S) identifying pairs from a relation R as a
free construction on |S| we only have to consider the relation R∪M instead of R, with the M as above.

The frame L(R) is the completion of Ω(Q) (both taken with the uniformity derived from the
respective metric uniformities), where the completion homomorphism γ : L(R)→ Ω(Q) is given by
(p,q) 7→]p,q[= {x ∈ Q | p < x < q}. Then L(R)⊕·· ·⊕L(R) (n summands) is the completion of
Ω(Qn) with the completion map γ given by the coproduct diagram

L(R) ιi //

γ

��

L(R)⊕·· ·⊕L(R)

γ

��
Ω(Q)

Ω(pi)
// Ω(Qn)

(where the pi, i = 1, . . . ,n, are the projections Qn →Q).
The frame of reals, L(R) (“point-free real numbers”), was originally introduced by Joyal in an

unpublished manuscript and thoroughly studied by Banaschewski in [? ] (see also Johnstone [? ]). As
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one might expect, it was not defined as the lattice Ω(R) of open sets in the standard real line R but as
a primarily algebraic entity, the free frame generated by pairs of rational numbers (which one can
intuitively view as rational intervals) factorized by natural relations (see 2.3 below). Under the Axiom
of Choice, L(R) is indeed isomorphic with Ω(R), but the point is to have the frame of point-free reals
as a frame in its own right and to be able to avoid choice whenever possible (it should be noted that
one can prove in a choice-free way for instance that L(R) is the completion of the frame of rationals
or that it is continuous, that is, locally compact, see [? ]).

Once one has the frame of real numbers, one can also represent continuous real functions on
a general frame L, namely as frame homomorphisms h : L(R) → L. This was originally done by
Banaschewski. However, the classical theory of real functions, not necessarily continuous, calls for a
point-free counterpart as well. An appropriate definition was presented in [? ]. A classical (general)
real function on a space (X ,Ω(X)) is a continuous real function on the discrete space (X ,P(X)). The
lattice P(X) of all subsets of X has a natural counterpart in S (L)op where S (L) is the co-frame of all
sublocales of L. Hence, a (general) real function on L can be represented as a frame homomorphism
L(R)→ S (L)op.

The present paper is inspired by [? ]. Using extensively the technique of sublocales, we present
a survey of some facts on point-free real functions. Most of the results are not new; the originality
is essentially in the presentation. Our main goal is to show how zero sets may be considered in the
localic setting (as zero sublocales) and then how several important notions and results about real
functions may be rewritten and directly proved using this tool.

After some necessary preliminaries we introduce the point-free real functions and prove a few
facts, in particular some results concerning images and preimages of sublocales are discussed. Then,
semicontinuous functions and their relation with the continuous ones are mentioned. In the following
section, point-free algebraic operations on L(R) are studied, with special attention paid to the addition,
multiplication, maximum and minimum. Next we turn to cozero and zero sublocales. The concept of
cozero element is a well-known standard topic and its sublocale counterpart is straightforward, but
there are no reasonable zero elements while in the context of sublocales we obtain a sensible notion.
This approach allows to formulate the basics of the theory in a way very much parallel to the classical
book of Gillman and Jerison [? ]. We illustrate this in a miscellany of topics.

The present paper is inspired by [? ]. Using extensively the technique of sublocales, we present
a survey of some facts on point-free real functions. Most of the results are not new; the originality
is essentially in the presentation. Our main goal is to show how zero sets may be considered in the
localic setting (as zero sublocales) and then how several important notions and results about real
functions may be rewritten and directly proved using this tool.

After some necessary preliminaries we introduce the point-free real functions and prove a few
facts, in particular some results concerning images and preimages of sublocales are discussed. Then,
semicontinuous functions and their relation with the continuous ones are mentioned. In the following
section, point-free algebraic operations on L(R) are studied, with special attention paid to the addition,
multiplication, maximum and minimum. Next we turn to cozero and zero sublocales. The concept of
cozero element is a well-known standard topic and its sublocale counterpart is straightforward, but
there are no reasonable zero elements while in the context of sublocales we obtain a sensible notion.
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This approach allows to formulate the basics of the theory in a way very much parallel to the classical
book of Gillman and Jerison [? ]. We illustrate this in a miscellany of topics.

3.4 Next section

3.5 Next section

3.6 Next section





Chapter 4

Conclusion

We end with some final comments . . .

17





Appendix A

More information

Carl Friedrich Gauss

Johann Carl Friedrich Gauss (30 April 1777 – 23 February 1855) was a German mathematician
who contributed significantly to many fields, including number theory, algebra, statistics, analysis,
differential geometry, geodesy, geophysics, electrostatics, astronomy, matrix theory, and optics.

Sometimes referred to as the Princeps mathematicorum (Latin, “the Prince of Mathematicians”
or “the foremost of mathematicians”) and “greatest mathematician since antiquity”, Gauss had a
remarkable influence in many fields of mathematics and science and is ranked as one of history’s most
influential mathematicians.

Gauss was a child prodigy. There are many anecdotes about his precocity while a toddler, and
he made his first ground-breaking mathematical discoveries while still a teenager. He completed
Disquisitiones Arithmeticae, his magnum opus, in 1798 at the age of 21, though it was not published
until 1801. This work was fundamental in consolidating number theory as a discipline and has shaped
the field to the present day.

Gauss’s intellectual abilities attracted the attention of the Duke of Brunswick, who sent him to
the Collegium Carolinum (now Braunschweig University of Technology), which he attended from
1792 to 1795, and to the University of Göttingen from 1795 to 1798. While at university, Gauss
independently rediscovered several important theorems; his breakthrough occurred in 1796 when he
showed that any regular polygon with a number of sides which is a Fermat prime (and, consequently,
those polygons with any number of sides which is the product of distinct Fermat primes and a power of
2) can be constructed by compass and straightedge. This was a major discovery in an important field
of mathematics; construction problems had occupied mathematicians since the days of the Ancient
Greeks, and the discovery ultimately led Gauss to choose mathematics instead of philology as a career.
Gauss was so pleased by this result that he requested that a regular heptadecagon be inscribed on his
tombstone. The stonemason declined, stating that the difficult construction would essentially look like
a circle.

The year 1796 was most productive for both Gauss and number theory. He discovered a construc-
tion of the heptadecagon on 30 March. He further advanced modular arithmetic, greatly simplifying
manipulations in number theory. On 8 April he became the first to prove the quadratic reciprocity
law. This remarkably general law allows mathematicians to determine the solvability of any quadratic

19



20 More information

equation in modular arithmetic. The prime number theorem, conjectured on 31 May, gives a good
understanding of how the prime numbers are distributed among the integers.

Another section

Subsection

Subsubsection

...
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